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fhreo -3-Hydroxycarboxylic Acids as Key Intermediates in a Highly 
Stereoselective Synthesis of (Z)= and (E)-Olefins and Enol Ethers 

By JOHANN MULZER, * ANDREAS POINTNER, ALEXANDER CHUCHOLOWSKI, and GISELA BRUNTRUP 
(Institut fiir Organische Ckemie der Universitat, Karlstrasse 23, D 8000 Miinchm 2, W.-Germany) 

Szcmmary threo-3-Hydroxycarboxylic acids, which are enol ethers with the triphenylphosphinediethyl azo- 
stereoselectively obtained from metallated carboxylic dicarboxylate-adduct, whereas the corresponding (E)-  
acids and aldehydes, are converted into (,%')-olefins and isomers are prepared via the p-lactones. 
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THE (2)- and the (E)-isomer of a particular olefin may be 
prepared from a common precursor molecule (threo- or 
erythro-A) by syn- and anti-elimination reactions (Scheme 1 ) .  

(a- threo-A (2) - 
olefin (erythro -A) olefin 

SCHEME 1 

Generally, however, i t  is difficult to obtain the precursor 
(A) in diastereomerically pure form and to find sufficiently 
stereoselective elimination reactions. Hence, although 
being conceptually straightforward, this method has found 
application in only a few individual cases.1 We now des- 
cribe efficient and highly stereoselective procedures for the 
preparation of (2)- and (E)-olefins and enol ethers from 
threo-3-hydroxycarboxylic acids; Scheme 1, X = OH, 
Y = CO,H, and XY = CO, + H,O (decarboxylative de- 
hydration). 

As we reported earlier,a the addition of the metallated 
carboxylic acids (1) to the aldehydes (2) stereoselectively 
furnishes threo-3-hydroxycarboxylic acids (3) in good 
yields. The diastereomeric purity of (3) can be easily 
increased to >98% (determined by 1H n.m.r. analysis) by 
recrystallization from chloroform. Scheme 2 and the 
Table show how the anti-elimination (3)-+(2)-(4) is effected 
by treating (3) with the triphenylphosphine-diethyl 
azodicarboxylate-adduct (5)3 (procedure A) , whereas the 
corresponding syn-elimination (3)+(E)-(4) is accomplished 
uia the truns-@-lactone (8) (procedure B) . f 

TABLE. (2)- and (E)-Olefins and enol ethers prepared according 
to procedures (A) and (B).a 

R1 
Ph 
Ph 
Ph 
Ph 
Ph 
OPh 
OPh 
OPh 
OPh 
OPh 

R2 M.p. of (3)/"C 
Me 137-138 

Prn 158-159 

Pri ,139-140 

Pr* 122-122.5 

Pri 137-137.5 
But 16A-164.5 

E t  143-1 43.5 

Bun 117-1 18 

E t  141-142 

Bun 91-92 

I 

(E)/(Z)-ratiob ( %  yield} 
from (3) 

,---L----- -7 

(A) (BP 
3 : 97 (75) >99 : 1 (63) 
2 : 98 (68) >99 : 1 (68) 
3:97 (77) >99:1 (71) 
3 :  97 (70) >99: 1 (65) 

<1:99 (65) >99: 1 (63) 
2:YS (82) >99:1 (78) 
2:98 (87) >99:1 (82) 

<1:99 (67) >99:1 (73) 
<1:99 (32) >99: 1 (85) 

2:98 (74) >99:1 (73) 

a All new compounds were fully characterized by lH n.ni.r. 
and i,r. spectroscopy, and elemental analysis. b Determined by 
capillary chromatography; experimental error ca. 1 %. C Pro- 
cedure (A) : (3) + PPh, + Et02C-N=N-C0,Et in tetrahydro- 
furan at 22 "C for 5 min; work up by distillation a t  80-120 OC, 
10 mmHg (olefins) and 60-100 "C, 0.1 mmHg (enol ethers). 
d Procedure (B) : (3) -+ (8) : (3) + PhS0,Cl in pyridine a t  22 "C 
for 20 h, work up with water-pentane and distillation at 100- 
140 "C. 0.01 mmHg. (8) -+ (E)  - (4) : refluxing dimethylforma- 
mide, 2-8 h, work up with water-pentane and distillation at 
80-120 "C, 10 mmHg (olefins) and 60-100 "C, 0.1 mmHg (enol 
ethers). 

The opposite stereochemical results of Procedures (A) 
and (B) respectively may be rationalized by assuming that 
(5) activates (3) at its hydroxy-oxygen atom selectively.4 
The resulting zwitterion (6) undergoes a Grob-fragmentation 
which, as usual,6 proceeds with anti-stereochemistry to 
give (2)-(4). By contrast, (8) is formed from (3) pre- 
sumably via  the carboxy-oxygen-activated intermediate 
(7).6 ,&Lactones are known to eliminate CO, with re- 
tention of 

(3) 
I 

Procedure ( A  1 

Procedure (B) 

SCHEME 2 

t The frans-configuration of (8) was established by lH n.m.r. comparison with the corresponding cis- ,!I-lactones, which we prepared 
by an independent route. We always found that J&is) = 6.5 and J,,,(trans) = 4.5 Hz (cf. S. Sternhell, Quavt. Rev., 1969, 23, 236). 
Similarly, S(3-H, cis) >6(3-H, trans) and 6(4-H, cis) >S(4-H, trans). The geometry of the olefins and enol ethers unambiguously 
follows from the coupling constants CJ(2) = 11.5 Hz €or olefins and 6 Hz for enol ethers: J ( E )  = 16 Hz (olefins) and 12 Hz (enol 
ethers)] and the chemical shifts (C. Pascual, J. Meier, and W. Simon, Helu. Cham. Acta, 1966, 49, 164) of the olefinic protons in the 
1H n.m.r. spectra. 
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I n  summary, the method provides an olefination sequence ethers, because stereocontrolled (C, C)-connective syn- 
[(l) + (2)+(3)-+(4)] which, by a n  appropriate choice of 
reagents, may be directed to give either the  (2)- or  the  
( E )  -isomer in practically pure forni and acceptable yield. 
This result is particularly valuable in the  case of t h e  enol 

theses are very rare for this class of cornpounds.8 
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